The decommissioning and monitoring of nuclear power stations could be made more safe in the future thanks to autonomous robots.
The Hunterston B power station in North Ayrshire ceased operations at the beginning of 2022 and is currently in the process of being defuelled, a process which is expected to last until 2025 due to the safety measures in place.
It has also been suggested that robots and drones could be used to monitor the former Chernobyl plant in Ukraine, amid fears sensors may have been damaged amid the Russian invasion of the country.
Now engineers from the University of Glasgow, University of Manchester, Bristol Robotics Laboratory and Heriot-Watt University have devised autonomous robots which could make such projects a reality.
Known as the SMuRFs, four-legged and airborne robots can collaborate and complete tasks that could be difficult or harmful for humans to undertake on their own.
Instead, a single human supervisor can remotely observe the actions of the robots as they share sensor data between themselves, combining their abilities to achieve results far beyond the reach of a single machine.
SMuRFs could offer authorities, regulators and industry a safer, faster method of monitoring nuclear facilities, as well as opening up new opportunities for the maintenance of engineering infrastructure in challenging environments like offshore wind power platforms.
In a new paper published in the journal IET Cyber-Systems and Robotics, the researchers outline how they deployed the SMuRF in a practical demonstration at the Robotics and Artificial Intelligence Collaboration (RAICo) facility in Cumbria.
RAICo is a collaboration between the UK Atomic Energy Authority (UKAEA), Nuclear Decommissioning Authority (NDA), Sellafield Ltd and the University of Manchester.
During the demonstration, the SMuRF successfully completed an inspection mission in a simulated radioactive storage facility containing some of the challenges found in real nuclear power decommissioning environments.
The robots’ ability to collaborate is the result of a sophisticated computer system developed by the researchers, which they call a ‘cyber physical system or CPS.
Read More: Scientists 'recreate Chernobyl’ as part of Scottish university lab experiment
The CPS is capable of communicating with up to 1,600 sensors, robots and other digital and physical assets in near to real-time. It also allows robots with very different abilities and operating systems to work together and most importantly, update the human operator.
The data collected and processed by the CPS enables the creation of a 3D digital twin of a real space. That allows the SMuRF to navigate around the space and carry out tasks with minimal oversight, while providing human operators with a wealth of data via a specially-designed digital dashboard to help the SMuRF make informed decisions if required. Human operators can also take direct control of the robots if they need to.
Combining the robots’ abilities allowed them to complete a series of tasks often applied to radiation monitoring around nuclear sites known as post-operational cleanout.
The robots collaborated to map the environment, creating a 3D digital twin of the space using their onboard sensors, which was supported by further mapping from an aerial drone piloted by a human operator.
Boston Dynamics’ Spot fetched tools for closer scans using its flexible arm, while wheeled robots Scout and CARMA mapped radiation levels across the testing environment. The CARMA robot successfully detected a simulated spill of radioactive liquid underneath a waste barrel, a detection that could help ensure proper containment and cleanup in a real-world environment.
Daniel Mitchell of the University of Glasgow’s James Watt School of Engineering is the paper’s corresponding author. He was recently named as the Institution of Engineering and Technology’s Rising Star 2023 in recognition of the impact of his research.
Read More: Two Scottish hydrogen projects win UK Government funding as some lose out
He said: “The robots we programmed and designed in this prototype SMuRF each have their own unique abilities and limitations, as well as their own operating systems.
“During the deployment of the SMuRF at RAICo, we were able to show how well the robots can work together and how the digital twin we built can provide remarkable situational awareness for human operators.
“That could make them ideally-suited for the challenges of working in potentially hazardous environments such nuclear inspection and decommissioning.
“Humans will still be required to oversee and direct the robot fleet, but their high level of autonomy could help keep people safe by allowing them to interact with the robots from their desks instead of visiting work sites.”
David Flynn, Professor in Cyber Physical Systems at the University of Glasgow, is a co-author of the paper. Professor Flynn added: “These kinds of autonomous robotic fleets have a great deal of potential to undertake a wide range of dangerous, dirty, dull, distant and dear jobs.
“In addition to work in the nuclear sector, there’s tremendous additional potential in sectors like offshore power generation, where SMuRFs could handle many routine inspection and repair tasks. Currently, these tasks are expensive because they often require staff to be helicoptered out to offshore sites, a process which can be hampered by bad weather.
“However, they are critically important to preventing downtime and ensuring a steady flow of power to the grid. Having a robot crew permanently on-site to carry out these routine tasks would maximise the potential of all kinds of renewable energy platforms.
“The next step for our research is to integrate a wider range of robots in our fleets, with even more diverse abilities to sense their surroundings, move through them in new ways, and manipulate objects.”
Why are you making commenting on The Herald only available to subscribers?
It should have been a safe space for informed debate, somewhere for readers to discuss issues around the biggest stories of the day, but all too often the below the line comments on most websites have become bogged down by off-topic discussions and abuse.
heraldscotland.com is tackling this problem by allowing only subscribers to comment.
We are doing this to improve the experience for our loyal readers and we believe it will reduce the ability of trolls and troublemakers, who occasionally find their way onto our site, to abuse our journalists and readers. We also hope it will help the comments section fulfil its promise as a part of Scotland's conversation with itself.
We are lucky at The Herald. We are read by an informed, educated readership who can add their knowledge and insights to our stories.
That is invaluable.
We are making the subscriber-only change to support our valued readers, who tell us they don't want the site cluttered up with irrelevant comments, untruths and abuse.
In the past, the journalist’s job was to collect and distribute information to the audience. Technology means that readers can shape a discussion. We look forward to hearing from you on heraldscotland.com
Comments & Moderation
Readers’ comments: You are personally liable for the content of any comments you upload to this website, so please act responsibly. We do not pre-moderate or monitor readers’ comments appearing on our websites, but we do post-moderate in response to complaints we receive or otherwise when a potential problem comes to our attention. You can make a complaint by using the ‘report this post’ link . We may then apply our discretion under the user terms to amend or delete comments.
Post moderation is undertaken full-time 9am-6pm on weekdays, and on a part-time basis outwith those hours.
Read the rules here